Solutions to tutorial exercises for stochastic processes

T1. (a) By the definition of the filtration we have $B_{t} \in \mathcal{F}_{t}$. Furthermore, since B_{t} is normally distributed, $\mathbb{E}\left|B_{t}\right|<\infty$, so that B_{t} is integrable for all $t \geq 0$. It remains to show that $\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]=0$. Because B has independent increments we know that $B_{t}-B_{s}$ is independent of \mathcal{F}_{s}^{0} for all $0 \leq s \leq t$. Using Proposition 2.7 we find

$$
\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}^{0}\right]=0
$$

(b) By definition $N_{t} \in \mathcal{F}_{t}$ and

$$
\mathbb{E}\left|N_{t}\right| \leq \mathbb{E}\left[B_{t}^{2}\right]+t=2 t<\infty .
$$

Again using Proposition 2.7 we find for any $0 \leq s \leq t$

$$
\begin{aligned}
\mathbb{E}\left[N_{t}-N_{s} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[B_{t}^{2}-B_{s}^{2}-t+s \mid \mathcal{F}_{s}^{0}\right] \\
& =\mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2}+2 B_{s} B_{t}-2 B_{s}^{2} \mid \mathcal{F}_{s}^{0}\right]-t+s .
\end{aligned}
$$

Since $B_{s} \in \mathcal{F}_{s}^{0}$ and $B_{t}-B_{s}$ is independent of \mathcal{F}_{s}^{0}, we find

$$
\begin{aligned}
\mathbb{E}\left[N_{t}-N_{s} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2}\right]+2 B_{s} \mathbb{E}\left[B_{t} \mid \mathcal{F}_{s}\right]-2 B_{s}^{2}-t+s \\
& =t-s+2 B_{s}^{2}-2 B_{s}^{2}-t+s=0 .
\end{aligned}
$$

T2. Let $0 \leq t_{1}<\cdots<t_{n}$. The vector ($X_{t_{2}}-X_{t_{1}}, \ldots, X_{t_{n}}-X_{t_{n-1}}$) has a multivariate normal distribution. Therefore it suffices to show that the increments are mutually uncorrelated. Note that since X is martingale, all increments have expectation 0 . Let $1<i<j \leq n$, then by using the law of total expectation we find

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t_{i}}-X_{t_{i}-1}, X_{t_{j}}-X_{t_{j}-1}\right) & =\mathbb{E}\left[\left(X_{t_{i}}-X_{t_{i-1}}\right)\left(X_{t_{j}}-X_{t_{j-1}}\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left(X_{t_{i}}-X_{t_{i}-1}\right)\left(X_{t_{j}}-X_{t_{j}-1}\right) \mid \mathcal{F}_{t_{j-1}}\right]\right] \\
& =\mathbb{E}\left[\left(X_{t_{i}}-X_{t_{i}-1}\right) \mathbb{E}\left[X_{t_{j}}-X_{t_{j}-1} \mid \mathcal{F}_{t_{j-1}}\right]\right] \\
& =0 .
\end{aligned}
$$

T3. We use the law of total expectation to get

$$
\begin{aligned}
\mathbb{E}\left[\left(M_{t}-M_{s}\right)^{2} \mid \mathcal{F}_{r}\right] & =\mathbb{E}\left[M_{t}^{2}+M_{s}^{2} \mid \mathcal{F}_{r}\right]-\mathbb{E}\left[2 M_{t} M_{s} \mid \mathcal{F}_{r}\right] \\
& =\mathbb{E}\left[M_{t}^{2}+M_{s}^{2} \mid \mathcal{F}_{r}\right]-2 \mathbb{E}\left[\mathbb{E}\left[M_{t} M_{s} \mid \mathcal{F}_{s}\right] \mid \mathcal{F}_{r}\right] \\
& =\mathbb{E}\left[M_{t}^{2}+M_{s}^{2} \mid \mathcal{F}_{r}\right]-2 \mathbb{E}\left[M_{s} \mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right] \mid \mathcal{F}_{r}\right] \\
& =\mathbb{E}\left[M_{t}^{2}-M_{s}^{2} \mid \mathcal{F}_{r}\right] .
\end{aligned}
$$

T4. To use the stopping theorem we first need to show that $\mathbb{E}[\tau]<\infty$. We can define another stopping time by taking $\tau \wedge t$, so that $\mathbb{E}[\tau \wedge t]<\infty$ for all $t>0$. We can use the stopping theorem on this stopping time to find

$$
\mathbb{E}[\tau \wedge t]=\mathbb{E}\left[B_{\tau \wedge t}^{2}\right] \leq a^{2} \vee b^{2},
$$

for all $t>0$. Using Fatou's lemma we get

$$
\mathbb{E}[\tau] \leq \liminf _{t \rightarrow \infty} \mathbb{E}[\tau \wedge t] \leq a^{2} \vee b^{2}<\infty
$$

We can now use the stopping theorem on τ to get

$$
0=B_{0}=\mathbb{E}\left[B_{\tau}\right]=-a \mathbb{P}\left(B_{\tau}=-a\right)+b \mathbb{P}\left(B_{\tau}=b\right)
$$

Combining this with the fact that $\mathbb{P}\left(B_{\tau}=-a\right)+\mathbb{P}\left(B_{\tau}=b\right)=1$, we conclude that $\mathbb{P}\left(B_{\tau}=-a\right)=\frac{b}{a+b}$ and $\mathbb{P}\left(B_{\tau}=b\right)=\frac{a}{a+b}$. Furthermore, again using the stopping theorem:

$$
\mathbb{E}[\tau]=\mathbb{E}\left[B_{\tau}^{2}\right]=a^{2} \mathbb{P}\left(B_{\tau}=-a\right)+b^{2} \mathbb{P}\left(B_{\tau}=b\right)=a b
$$

T5. Let $p:=\mathbb{P}(\{v\})$, and thus $\mathbb{P}(\{w\})=1-p$. Since the distribution has mean u, we find

$$
v p+w(1-p)=u
$$

It follows that

$$
p=\frac{u-w}{v-w}
$$

so that \mathbb{P} is uniquely determined.

